With this tool you can visualize complex-valued functions
by assigning a color to each point in the complex plane
according to its argument/phase.
The identity function f(z)=z shows how colors are assigned.
Input box:
Enter any expression in z. Here are some example functions to try:
trig function : sin(z),cos(z),tan(z),cot(z),sec(z),csc(z),sinh(z),cosh(z),tanh(z),coth(z),sech(z),csch(z),asin(z),acos(z),atan(z),acot(z),asec(z),acsc(z),asinh(z),acosh(z),atanh(z),acoth(z),asech(z),acsch(z),arcsin(z),arccos(z),arctan(z),arccot(z),arcsec(z),arccsc(z),arcsinh(z),arccosh(z),arctanh(z),arccoth(z),arcsech(z),arccsch(z),
inverse trig function : asin(z)=arcsin(z),acos(z)=arccos(z),atan(z)=arctan(z),acot(z)=arccot(z),asec(z)=arcsec(z),acsc(z)=arccsc(z),asinh(z)=arcsinh(z),acosh(z)=arccosh(z),atanh(z)=arctanh(z),acoth(z)=arccoth(z),asech(z)=arcsech(z),acsch(z)=arccsch(z)
special function : gamma(z),pow(z,2),rationalBlaschke(z,2),mobius(z,2,3,4,5),psymbol(z,2),binet(z),joukowsky(z,2,3),zeta(z),dirichletEta(z),binomial(z,2),sn(z,0.2),cn(z,0.2),dn(z,0.2),sum(z,2),prod(z,2),blaschke(z,2),iter(z,z,3),
[an error occurred while processing this directive]