Let
denote the change in argument of a function
around a closed loop
. Also let
denote
the number of Roots of
in
and
denote the number of Poles of
in
. Then
![\begin{displaymath}[\arg f(z)]= {1\over 2\pi}(N-P).
\end{displaymath}](v_300.gif) |
(1) |
To find
in a given region
, break
into paths and find
for each path. On a circular
Arc
 |
(2) |
let
be a Polynomial
of degree
. Then
Plugging in
gives
![\begin{displaymath}[\arg P(z)]= [\arg Re^{i\theta n}] + \left[{\arg { P(Re^{i\theta})\over Re^{i\theta n}}}\right]
\end{displaymath}](v_307.gif) |
(4) |
![\begin{displaymath}
\lim_{R\to \infty} {P(Re^{i\theta})\over Re^{i\theta n}} = \hbox{[constant]},
\end{displaymath}](v_308.gif) |
(5) |
so
![\begin{displaymath}
\left[{ P(Re^{i\theta})\over Re^{i\theta n}}\right]= 0,
\end{displaymath}](v_309.gif) |
(6) |
and
![\begin{displaymath}[\arg P(z)]= [\arg e^{i\theta n}] = n(\theta_2-\theta_1).
\end{displaymath}](v_310.gif) |
(7) |
For a Real segment
,
![\begin{displaymath}[\arg f(x)]= \tan^{-1}\left[{0\over f(x)}\right]= 0.
\end{displaymath}](v_312.gif) |
(8) |
For an Imaginary segment
,
![\begin{displaymath}[\arg f(iy)]= \left\{{\tan^{-1} {\Im[P(iy)]\over \Re[P(iy)]}}\right\}_{\theta_1}^{\theta_2}.
\end{displaymath}](v_314.gif) |
(9) |
Note that the Argument must change continuously, so ``jumps'' occur across inverse tangent asymptotes.
© 1996-9 Eric W. Weisstein
1999-05-26