One of the 26 finite Simple Groups. The most complicated is the Monster Group. A summary, as given by Conway et al. (1985), is given below.
Symbol | Name | Order | ||
Mathieu | 1 | 1 | ||
Mathieu | 2 | 2 | ||
Mathieu | 12 | 2 | ||
Mathieu | 1 | 1 | ||
Mathieu | 1 | 1 | ||
Janko | 2 | 2 | ||
Suz | Suzuki | 6 | 2 | |
HS | Higman-Sims | 2 | 2 | |
McL | McLaughlin | 3 | 2 | |
Conway | 1 | 1 | ||
Conway | 1 | 1 | ||
Conway | 2 | 1 | ||
He | Held | 1 | 2 | |
Fischer | 6 | 2 | ||
Fischer | 1 | 1 | ||
Fischer | 3 | 2 | ||
HN | Harada-Norton | 1 | 2 | |
Th | Thompson | 1 | 1 | |
Baby Monster | 2 | 1 | ||
Monster | 1 | 1 | ||
Janko | 1 | 1 | ||
O'N | O'Nan | 3 | 2 | |
Janko | 3 | 2 | ||
Ly | Lyons | 1 | 1 | |
Ru | Rudvalis | 2 | 1 | |
Janko | 1 | 1 |
See also Baby Monster Group, Conway Groups, Fischer Groups, Harada-Norton Group, Held Group, Higman-Sims Group, Janko Groups, Lyons Group, Mathieu Groups, McLaughlin Group, Monster Group, O'Nan Group, Rudvalis Group, Suzuki Group, Thompson Group
References
Aschbacher, M. Sporadic Groups. New York: Cambridge University Press, 1994.
Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A. Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, England: Clarendon Press, p. viii, 1985.
Math. Intell. Cover of volume 2, 1980.
Wilson, R. A. ``ATLAS of Finite Group Representation.'' http://for.mat.bham.ac.uk/atlas/html/contents.html#spo.
© 1996-9 Eric W. Weisstein