Solid partitions are generalizations of Plane Partitions. MacMohan (1960) conjectured the Generating
Function for the number of solid partitions was
References
Atkin, A. O. L.; Bratley, P.; MacDonald, I. G.; and McKay, J. K. S. ``Some Computations for -Dimensional Partitions.''
Proc. Cambridge Philos. Soc. 63, 1097-1100, 1967.
Knuth, D. E. ``A Note on Solid Partitions.'' Math. Comput. 24, 955-961, 1970.
MacMahon, P. A. ``Memoir on the Theory of the Partitions of Numbers. VI: Partitions in Two-Dimensional Space,
to which is Added an Adumbration of the Theory of Partitions in Three-Dimensional Space.''
Phil. Trans. Roy. Soc. London Ser. A 211, 345-373, 1912b.
MacMahon, P. A. Combinatory Analysis, Vol. 2. New York: Chelsea, pp. 75-176, 1960.
Sloane, N. J. A. Sequence
A000293/M3392
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.