The second-order Ordinary Differential Equation
 |
(1) |
which can be rewritten
![\begin{displaymath}
{d\over dx} \left[{(1-x^2) {dy\over dx}}\right]+ l(l+1) y = 0.
\end{displaymath}](l1_1221.gif) |
(2) |
The above form is a special case of the associated Legendre differential equation with
. The Legendre differential
equation has Regular Singular Points at
, 1, and
. It can be solved using a
series expansion,
Plugging in,
 |
(6) |
|
|
|
(7) |
|
|
|
(8) |
|
|
|
(9) |
![\begin{displaymath}
\sum_{n=0}^\infty \{(n+1)(n+2)a_{n+2}+[-n(n-1)-2n+l(l+1)]a_n\} = 0,
\end{displaymath}](l1_1235.gif) |
(10) |
so each term must vanish and
![\begin{displaymath}
(n+1)(n+2)a_{n+2}-n(n+1)+l(l+1)]a_n = 0
\end{displaymath}](l1_1236.gif) |
(11) |
Therefore,
so the Even solution is
![\begin{displaymath}
y_1(x) = 1+\sum_{n=1}^\infty (-1)^n {[(l-2n+2)\cdots(l-2)l][(l+1)(l+3)\cdots (l+2n-1)] \over (2n)!} x^{2n}.
\end{displaymath}](l1_1248.gif) |
(16) |
Similarly, the Odd solution is
![\begin{displaymath}
y_2(x)= x+\sum_{n=1}^\infty(-1)^n{[(l-2n+1)\cdots(l-3)(l-1)][(l+2)(l+4)\cdots(l+2n)\over (2n+1)!}x^{2m+1}.
\end{displaymath}](l1_1249.gif) |
(17) |
If
is an Even Integer, the series
reduces to a Polynomial of degree
with only Even
Powers of
and the series
diverges. If
is an Odd Integer, the series
reduces
to a Polynomial of degree
with only Odd Powers of
and the series
diverges. The
general solution for an Integer
is given by the Legendre Polynomials
 |
(18) |
where
is chosen so that
. If the variable
is replaced by
, then the Legendre
differential equation becomes
 |
(19) |
as is derived for the associated Legendre differential equation with
.
The associated Legendre differential equation is
![\begin{displaymath}
{d\over dx} \left[{(1-x^2) {dy\over dx}}\right]+ \left[{l(l+1) - {m^2\over 1-x^2}}\right]y = 0
\end{displaymath}](l1_1258.gif) |
(20) |
![\begin{displaymath}
(1-x^2) {d^2y\over dx^2} - 2x {dy\over dx}+\left[{l(l+1) - {m^2\over 1-x^2}}\right]y = 0.
\end{displaymath}](l1_1259.gif) |
(21) |
The solutions to this equation are called the associated Legendre polynomials. Writing
, first establish
the identities
 |
(22) |
 |
(23) |
and
 |
(25) |
Therefore,
Plugging (22) into (26) and the result back into (21) gives
![\begin{displaymath}
\left({{d^2y\over d\theta^2}-{\cos\theta\over\sin\theta} {dy...
...r d\theta}+\left[{l(l+1) - {m^2\over\sin^2\theta}}\right]y = 0
\end{displaymath}](l1_1270.gif) |
(27) |
![\begin{displaymath}
{d^2y\over d\theta^2} + {\cos\theta\over\sin\theta} {dy\over dx} + \left[{l(l+1) - {m^2\over\sin^2\theta}}\right]y = 0.
\end{displaymath}](l1_1271.gif) |
(28) |
References
Abramowitz, M. and Stegun, C. A. (Eds.).
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, p. 332, 1972.
© 1996-9 Eric W. Weisstein
1999-05-26