A diagonal matrix is a Matrix
of the form
 |
(1) |
where
is the Kronecker Delta,
are constants, and there is no summation over indices. The general
diagonal matrix is therefore Square and of the form
![\begin{displaymath}
\left[{\matrix{
c_1 & 0 & \cdots & 0\cr
0 & c_2 & \cdots &...
...\vdots & \ddots & \vdots\cr
0 & 0 & \cdots & c_n\cr}}\right].
\end{displaymath}](d1_720.gif) |
(2) |
Given a Matrix equation of the form
![\begin{displaymath}
\left[{\matrix{a_{11} & \cdots & a_{1n}\cr \vdots & \ddots &...
...ots & \ddots & \vdots\cr a_{n1} & \cdots & a_{nn}\cr}}\right],
\end{displaymath}](d1_721.gif) |
(3) |
multiply through to obtain
![\begin{displaymath}
\left[{\matrix{a_{11}\lambda_1 & \cdots & a_{1n}\lambda_n\cr...
...ots\cr a_{n1}\lambda_n & \cdots & a_{nn}\lambda_n\cr}}\right].
\end{displaymath}](d1_722.gif) |
(4) |
Since in general,
for
, this can be true only if off-diagonal components vanish.
Therefore, A must be diagonal.
Given a diagonal matrix
,
![\begin{displaymath}
{\hbox{\sf T}}^n=\left[{\matrix{
t_1 & 0 & \cdots & 0\cr
0...
...ts & \ddots & \vdots\cr
0 & 0 & \cdots & {t_k}^n\cr}}\right].
\end{displaymath}](d1_726.gif) |
(5) |
See also Matrix, Triangular Matrix, Tridiagonal Matrix
References
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 181-184 and 217-229, 1985.
© 1996-9 Eric W. Weisstein
1999-05-24